On Hill's equation with a discontinuous coefficient.
We obtain asymptotic formulas for eigenvalues and eigenfunctions of the operator generated by a system of ordinary differential equations with summable coefficients and periodic or antiperiodic boundary conditions. Then using these asymptotic formulas, we find necessary and sufficient conditions on the coefficients for which the system of eigenfunctions and associated functions of the operator under consideration forms a Riesz basis.
Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator be defined on L₂[0,1]. We prove that has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator always equals 1.