On a nonlocal Ostrovsky-Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability.
Golenia, Jolanta, Pavlov, Maxim V., Popowicz, Ziemowit, Prykarpatsky, Anatoliy K. (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Sakovich, Sergei (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Okoya, S.S. (2000)
International Journal of Mathematics and Mathematical Sciences
Amroun, Nour-Eddine, Benaissa, Abbes (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Kozhevnikov, Alexander, Lepsky, Olga (2006)
Boundary Value Problems [electronic only]
Nasim, C. (1988)
International Journal of Mathematics and Mathematical Sciences
Jan Chabrowski (1983)
Mathematische Zeitschrift
Gvazava, J. (2000)
Georgian Mathematical Journal
Keckic, Jovan D. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Singh, K., Gupta, R.K. (2005)
International Journal of Mathematics and Mathematical Sciences
Iričanin, D.Bratislav, Mašanović, Z.Goran, Gvozdić, Dejan (1998)
Novi Sad Journal of Mathematics
Carsten Elsner (2006)
Colloquium Mathematicae
We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function can be approximated with arbitrary accuracy by an infinite sum of analytic functions , each solving the same system of universal partial differential equations, namely (σ = 1,..., s).
Arruda, Lynnyngs Kelly (2010)
International Journal of Mathematics and Mathematical Sciences
Haci Mehmet Baskonus, Hasan Bulut (2015)
Open Mathematics
In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L∞ maximum nodal norm to evaluate the accuracy...
J. Chabrowski (1973)
Annales Polonici Mathematici
Vladimír Ďurikovič (1974)
Časopis pro pěstování matematiky
Lev Sakhnovich (2009)
Open Mathematics
We consider the Knizhnik-Zamolodchikov system of linear differential equations. The coefficients of this system are rational functions. We prove that under some conditions the solution of the KZ system is rational too. We give the method of constructing the corresponding rational solution. We deduce the asymptotic formulas for the solution of the KZ system when the parameter ρ is an integer.
Sakovich, Anton, Sakovich, Sergei (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Harris, Shirley E., Clarkson, Peter A. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
S. Alinhac (1975/1976)
Séminaire Équations aux dérivées partielles (Polytechnique)