Asymptotic expansion of the heat kernel for a class of hypoelliptic operators
We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...
We study asymptotic behavior of solutions to multifractal Burgers-type equation , where the operator A is a linear combination of fractional powers of the second derivative and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the -norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.
This paper is concerned with the Dirichlet-Cauchy problem for second order parabolic equations in domains with edges. The asymptotic behaviour of the solution near the edge is studied.