self-maps on closed manifolds with finitely many periodic points all of them hyperbolic
Let be a connected closed manifold and a self-map on . We say that is almost quasi-unipotent if every eigenvalue of the map (the induced map on the -th homology group of ) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of as eigenvalue of all the maps with odd is equal to the sum of the multiplicities of as eigenvalue of all the maps with even. We prove that if is having finitely many periodic points all of them hyperbolic,...