A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms. I.
We introduce the notions of asymptotic period and asymptotically periodic orbits in metric spaces. We study some properties of these notions and their connections with ω-limit sets. We also discuss the notion of growth rate of such orbits and describe its properties in an extreme case.
The dynamical Mertens' theorem describes asymptotics for the growth in the number of closed orbits in a dynamical system. We construct families of ergodic automorphisms of fixed entropy on compact connected groups with a continuum of growth rates on two different growth scales. This shows in particular that the space of all ergodic algebraic dynamical systems modulo the equivalence of shared orbit-growth asymptotics is not countable. In contrast, for the equivalence relation of measurable isomorphism...