The search session has expired. Please query the service again.
We obtain an algebraic interpretation by means of the Picard-Vessiot theory of a result by Ziglin about the self-intersection of complex separatrices of time-periodically perturbed one-degree of freedom complex analytical Hamiltonian systems.
The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.
Currently displaying 1 –
2 of
2