A comparative dynamical analysis of Hebrew texts.
We study dynamical systems in the non-Archimedean number fields (i.e. fields with non-Archimedean valuation). The main results are obtained for the fields of p-adic numbers and complex p-adic numbers. Already the simplest p-adic dynamical systems have a very rich structure. There exist attractors, Siegel disks and cycles. There also appear new structures such as fuzzy cycles. A prime number p plays the role of parameter of a dynamical system. The behavior of the iterations depends on this parameter...
Les algèbres différentielles sont apparues comme des outils commodes ou même inévitables pour exprimer les symétries continues, exactes ou brisées, suivant la situation physique envisagée, dans le cadre de l’algorithme de Feynman de la théorie quantique des champs perturbative. Les algèbres de courants, les théories de Yang-Mills, la première quantification de la corde, sont proposées comme exemples classiques.