Page 1 Next

Displaying 1 – 20 of 39

Showing per page

The bounce problem, on n-dimensional Riemannian manifolds

Giuseppe Buttazzo, Danilo Percivale (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro vengono generalizzati i risultati relativi al problema del rimbalzo unidimensionale studiato in [5]. Precisamente si considera un punto mobile su una varietà Riemanniana V n -dimensionale, soggetto all’azione di un potenziale variabile nel tempo e vincolato a restare in una parte W di V avente un bordo di classe C 3 contro cui il punto «rimbalza»....

The conjugacy between Cascades generated by a weakly nonlinear system and the Euler method of a flow

Dariusz Jabłoński (2002)

Applicationes Mathematicae

Sufficient conditions for the existence of a topological conjugacy between a cascade obtained from a weakly nonlinear flow by fixing the time step and a cascade obtained by the Euler method are analysed. The aim of this paper is to provide relations between constants in the Fečkan theorem. Given such relations an implementation of a weakly nonlinear neuron is possible.

The equivalence of controlled lagrangian and controlled hamiltonian systems

Dong Eui Chang, Anthony M. Bloch, Naomi E. Leonard, Jerrold E. Marsden, Craig A. Woolsey (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled lagrangians and its hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems

Dong Eui Chang, Anthony M. Bloch, Naomi E. Leonard, Jerrold E. Marsden, Craig A. Woolsey (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

The Geometric and Dynamic Essence of Phyllotaxis

P. Atela (2011)

Mathematical Modelling of Natural Phenomena

We present a dynamic geometric model of phyllotaxis based on two postulates, primordia formation and meristem expansion. We find that Fibonacci, Lucas, bijugate and multijugate are all variations of the same unifying phenomenon and that the difference lies in the changes in position of initial primordia. We explore the set of all initial positions and color-code its points depending on the phyllotactic pattern that arises.

The n -centre problem of celestial mechanics for large energies

Andreas Knauf (2002)

Journal of the European Mathematical Society

We consider the classical three-dimensional motion in a potential which is the sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configuration of the n centres, we find a universal behaviour for all energies E above a positive threshold. Whereas for n = 1 there are no bounded orbits, and for n = 2 there is just one closed orbit, for n 3 the bounded orbits form a Cantor set. We analyze the symbolic dynamics and estimate Hausdorff dimension and topological entropy of this hyperbolic set....

Currently displaying 1 – 20 of 39

Page 1 Next