Permanence of a discrete model of mutualism with infinite deviating arguments.
In this paper, we introduce Pexiderized generalized operators on certain special spaces introduced by Bielecki-Czerwik and investigate their norms.
The second order linear difference equation where and , is considered as a special type of symplectic systems. The concept of the phase for symplectic systems is introduced as the discrete analogy of the Borůvka concept of the phase for second order linear differential equations. Oscillation and nonoscillation of (1) and of symplectic systems are investigated in connection with phases and trigonometric systems. Some applications to summation of number series are given, too.
We study dichotomous behavior of solutions to a non-autonomous linear difference equation in a Hilbert space. The evolution operator of this equation is not continuously invertible and the corresponding unstable subspace is of infinite dimension in general. We formulate a condition ensuring the dichotomy in terms of a sequence of indefinite metrics in the Hilbert space. We also construct an example of a difference equation in which dichotomous behavior of solutions is not compatible with the signature...
The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.
Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…)....
Starting with the computation of the appropriate Poisson kernels, we review, complement, and compare results on drifted Laplace operators in two different contexts: homogeneous trees and the hyperbolic half-plane.
K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.