On the Weierstrass functions, Sigma, Zeta, Pe, and their functional and differential equations. (Short Communication).
Steven B. Bank, Robert P. Kaufman (1977)
Aequationes mathematicae
SHIGERU HARUKI (1971)
Aequationes mathematicae
SHIGERU HARUKI (1971)
Aequationes mathematicae
C.T. NG (1971)
Aequationes mathematicae
C.T. NG (1971)
Aequationes mathematicae
György Targoński (1977)
Annales Polonici Mathematici
Deng Hua Cheng, Ju Rang Yan (2000)
Mathematica Slovaca
Roman Ger, Andrzej Smajdor (1976)
Fundamenta Mathematicae
Margarita Mas, Miquel Monserrat, Joan Torrens (2006)
Kybernetika
This paper deals with two kinds of fuzzy implications: QL and Dishkant implications. That is, those defined through the expressions and respectively, where is a t-norm, is a t-conorm and is a strong negation. Special attention is due to the relation between both kinds of implications. In the continuous case, the study of these implications is focused in some of their properties (mainly the contrapositive symmetry and the exchange principle). Finally, the case of non continuous t-norms...
Pavla Vrbová (1973)
Časopis pro pěstování matematiky
Marek Kuczma (1973)
Annales Polonici Mathematici
J. GER, A. SMAJDOR (1971)
Aequationes mathematicae
JOHN A. BAKER (1971)
Aequationes mathematicae
JOHN A. BAKER (1971)
Aequationes mathematicae
A. Járai, L. Székelyhidi (1996)
Aequationes mathematicae
St. Golab, J. Aczél (1970)
Aequationes mathematicae
A. Ivic, W. Scharz (1980)
Aequationes mathematicae
D. D. Adamović (1972)
Matematički Vesnik
Carme Burgués (1981)
Stochastica
We prove that two archimedean t-norms with equal diagonal sections and zero-sets must be identical.
Józef Tabor (1975)
Colloquium Mathematicae