On a functional inequality.
K. Baron and Z. Kominek [2] have studied the functional inequality f(x+y) - f(x) - f(y) ≥ ϕ (x,y), x, y ∈ X, under the assumptions that X is a real linear space, ϕ is homogeneous with respect to the second variable and f satisfies certain regularity conditions. In particular, they have shown that ϕ is bilinear and symmetric and f has a representation of the form f(x) = ½ ϕ(x,x) + L(x) for x ∈ X, where L is a linear function. The purpose of the present...
We generalize the well known separation theorems for subadditive and superadditive functionals to some classes of not necessarily Abelian semigroups. We also consider the problem of supporting subadditive functionals by additive ones in the not necessarily commutative case. Our results are motivated by similar extensions of the Hyers stability theorem for the Cauchy functional equation. In this context the so-called weakly commutative and amenable semigroups appear naturally. The relations between...
Let L¹₄ be the group of 4-jets at zero of diffeomorphisms f of ℝ with f(0) = 0. Identifying jets with sequences of derivatives, we determine all subsemigroups of L¹₄ consisting of quadruples (x₁,f(x₁,x₄),g(x₁,x₄),x₄) ∈ (ℝ∖{0}) × ℝ³ with continuous functions f,g:(ℝ∖{0}) × ℝ → ℝ. This amounts to solving a set of functional equations.