General Tauberian theorems in R... connected with a theorem of Korenblum.
Let , where, for 1 ≤ r < ∞, (resp., ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values, the condition...
Let s: [1,∞) → ℂ be a locally Lebesgue integrable function. We say that s is summable (L,1) if there exists some A ∈ ℂ such that , where . (*) It is clear that if the ordinary limit s(t) → A exists, then also τ(t) → A as t → ∞. We present sufficient conditions, which are also necessary, in order that the converse implication hold true. As corollaries, we obtain so-called Tauberian theorems which are analogous to those known in the case of summability (C,1). For example, if the function s is slowly...