La propriété de Banach Saks ne passe pas de à , d’après J. Bourgain
We shall prove the following statements: Given a sequence in a Banach space enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) of the sequence such that whenever belongs to the closed convex hull of the set of weak limit points of . In case has the Banach-Saks property and is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the...
Let be a non-negative matrix. Denote by the supremum of those that satisfy the inequality where and and also is an increasing, non-negative sequence of real numbers. If , we use instead of . In this paper we obtain a Hardy type formula for , where is a Hausdorff matrix and . Another purpose of this paper is to establish a lower bound for , where is the Nörlund matrix associated with the sequence and . Our results generalize some works of Bennett, Jameson and present authors....