Displaying 121 – 140 of 156

Showing per page

Sets with the Bernstein and generalized Markov properties

Mirosław Baran, Agnieszka Kowalska (2014)

Annales Polonici Mathematici

It is known that for C determining sets Markov’s property is equivalent to Bernstein’s property. We are interested in finding a generalization of this fact for sets which are not C determining. In this paper we give examples of sets which are not C determining, but have the Bernstein and generalized Markov properties.

Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions

Heiner Gonska, Radu Păltănea (2010)

Czechoslovak Mathematical Journal

We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given.

Smoothness of the Green function for a special domain

Serkan Celik, Alexander Goncharov (2012)

Annales Polonici Mathematici

We consider a compact set K ⊂ ℝ in the form of the union of a sequence of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity of the Green functions g K is estimated. Markov’s constants of the corresponding set are evaluated.

Tangential Markov inequality in L p norms

Agnieszka Kowalska (2015)

Banach Center Publications

In 1889 A. Markov proved that for every polynomial p in one variable the inequality | | p ' | | [ - 1 , 1 ] ( d e g p ) ² | | p | | [ - 1 , 1 ] is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces,...

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Tamás Erdélyi (2003)

Studia Mathematica

Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose ( λ j ) j = 1 is a sequence of distinct positive numbers. Then s p a n 1 , x λ , x λ , . . . is dense in C[0,1] if and only if j = 1 ( λ j ) / ( λ j ² + 1 ) = . Moreover, if j = 1 ( λ j ) / ( λ j ² + 1 ) < , then every function from the C[0,1] closure of s p a n 1 , x λ , x λ , . . . can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an earlier result...

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially...

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁ > 0 such...

The Schwarz-Pick theorem and its applications

M. Qazi, Q. Rahman (2011)

Annales UMCS, Mathematica

Various derivative estimates for functions of exponential type in a half-plane are proved in this paper. The reader will also find a related result about functions analytic in a quadrant. In addition, the paper contains a result about functions analytic in a strip. Our main tool in this study is the Schwarz-Pick theorem from the geometric theory of functions. We also use the Phragmén-Lindelöf principle, which is of course standard in such situations.

Currently displaying 121 – 140 of 156