Canonical products of infinite order.
We prove the central limit theorem for the integrated square error of multivariate box-spline density estimators.
In the present paper our aim is to establish convergence and Voronovskaja-type theorems for first derivatives of generalized Baskakov operators for functions of one and two variables in exponential and polynomial weight spaces.
Let X be a Banach space and T ∈ L(X), the space of all bounded linear operators on X. We give a list of necessary and sufficient conditions for the uniform stability of T, that is, for the convergence of the sequence of iterates of T in the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ ℕ, the restriction of the pth iterate of T to the range of I-T is a Banach contraction. Our proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction...