A Probabilistic Theory for Error Estimation in Automatic Integration.
A sharp companion of Ostrowski’s inequality for the Riemann-Stieltjes integral [...] ∫abf(t) du(t) , where f is assumed to be of r-H-Hölder type on [a, b] and u is of bounded variation on [a, b], is proved. Applications to the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also pointed out.
Mediante integrali multipli agevoli per il calcolo numerico vengono espressi il valore assoluto di un determinante qualsiasi e le formule di Cramer.
The paper discusses new cubature formulas for classical integral operators of mathematical physics based on the «approximate approximation» of the density with Gaussian and related functions. We derive formulas for the cubature of harmonic, elastic and diffraction potentials approximating with high order in some range relevant for numerical computations. We prove error estimates and provide numerical results for the Newton potential.