Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms
Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space to a quasi-Banach space ℬ if and only if sup: a is an infinitely differentiable (p,q,s)-atom of < ∞, where the (p,q,s)-atom of is as defined by Han, Paluszyński and Weiss.