Displaying 261 – 280 of 1635

Showing per page

Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

Liguang Liu, Dachun Yang (2009)

Studia Mathematica

Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space p , q s ( ) to a quasi-Banach space ℬ if and only if sup | | T ( a ) | | : a is an infinitely differentiable (p,q,s)-atom of p , q s ( ) < ∞, where the (p,q,s)-atom of p , q s ( ) is as defined by Han, Paluszyński and Weiss.

Boundedness of sublinear operators on the homogeneous Herz spaces.

Guoen Hu (2003)

Publicacions Matemàtiques

Some boundedness results are established for sublinear operators on the homogeneous Herz spaces. As applications, some new theorems about the boundedness on homogeneous Herz spaces for commutators of singular integral operators are obtained.

Boundedness of Toeplitz type operators associated to Riesz potential operator with general kernel on Orlicz space

Dazhao Chen (2015)

Open Mathematics

In this paper, the boundedness properties for some Toeplitz type operators associated to the Riesz potential and general integral operators from Lebesgue spaces to Orlicz spaces are proved. The general integral operators include singular integral operator with general kernel, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.

Boundedness properties of fractional integral operators associated to non-doubling measures

José García-Cuerva, A. Eduardo Gatto (2004)

Studia Mathematica

The main purpose of this paper is to investigate the behavior of fractional integral operators associated to a measure on a metric space satisfying just a mild growth condition, namely that the measure of each ball is controlled by a fixed power of its radius. This allows, in particular, non-doubling measures. It turns out that this condition is enough to build up a theory that contains the classical results based upon the Lebesgue measure on Euclidean space and their known extensions for doubling...

Bounds of Riesz Transforms on L p Spaces for Second Order Elliptic Operators

Zhongwei Shen (2005)

Annales de l’institut Fourier

Let = -div ( A ( x ) ) be a second order elliptic operator with real, symmetric, bounded measurable coefficients on n or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed p &gt; 2 , a necessary and sufficient condition is obtained for the boundedness of the Riesz transform ( ) - 1 / 2 on the L p space. As an application, for 1 &lt; p &lt; 3 + ϵ , we establish the L p boundedness of Riesz transforms on Lipschitz domains for operators with V M O coefficients. The range of p is sharp. The closely related boundedness of ...

Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)

Pascal Auscher, Philippe Tchamitchian (1995)

Annales de l'institut Fourier

Dans cet article, on considère les opérateurs différentiels T = b ( x ) D ( a ( x ) D ) , où a ( x ) et b ( x ) sont deux fonctions mesurables, bornées et accrétives, et D = - i d d x . Les résultats principaux portent sur les propriétés fonctionnelles de T , de sa racine carrée, avec applications à l’équation elliptique t 2 u - T u = 0 sur × [ 0 , + [ . On démontre que T 1 / 2 D - 1 est un opérateur de Calderón-Zygmund qui dépend analytiquement du couple ( a , b ) . Les estimations ponctuelles optimales sur le noyau du semi-groupe exp ( - t L 1 / 2 ) et le calcul fonctionnel permettent de développer une théorie...

Calderón-type reproducing formula and the Tb theorem.

Yong Sheng Han (1994)

Revista Matemática Iberoamericana

In this paper we use the Calderón-Zygmund operator theory to prove a Calderón type reproducing formula associated with a para-accretive function. Using our Calderón-type reproducing formula we introduce a new class of the Besov and Triebel-Lizorkin spaces and prove a Tb theorem for these new spaces.

Calderón-Zygmund operators acting on generalized Carleson measure spaces

Chin-Cheng Lin, Kunchuan Wang (2012)

Studia Mathematica

We study Calderón-Zygmund operators acting on generalized Carleson measure spaces C M O r α , q and show a necessary and sufficient condition for their boundedness. The spaces C M O r α , q are a generalization of BMO, and can be regarded as the duals of homogeneous Triebel-Lizorkin spaces as well.

Currently displaying 261 – 280 of 1635