Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Images of Gaussian random fields: Salem sets and interior points

Narn-Rueih Shieh, Yimin Xiao (2006)

Studia Mathematica

Let X = X ( t ) , t N be a Gaussian random field in d with stationary increments. For any Borel set E N , we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.

Images of some functions and functional spaces under the Dunkl-Hermite semigroup

Néjib Ben Salem, Walid Nefzi (2013)

Commentationes Mathematicae Universitatis Carolinae

We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, 𝒮 ( ) and L α p ( ) , 1 < p < , under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.

In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc

Nikolai Nikolski (2012)

Annales de l’institut Fourier

Completeness of a dilation system ( ϕ ( n x ) ) n 1 on the standard Lebesgue space L 2 ( 0 , 1 ) is considered for 2-periodic functions ϕ . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space H 2 ( 𝔻 2 ) on the Hilbert multidisc 𝔻 2 . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...

Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball

Ömer Faruk Doğan, Adem Ersin Üreyen (2019)

Czechoslovak Mathematical Journal

We consider harmonic Bergman-Besov spaces b α p and weighted Bloch spaces b α on the unit ball of n for the full ranges of parameters 0 < p < , α , and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when α > 0 .

Indices of Orlicz spaces and some applications

Alberto Fiorenza, Miroslav Krbec (1997)

Commentationes Mathematicae Universitatis Carolinae

We study connections between the Boyd indices in Orlicz spaces and the growth conditions frequently met in various applications, for instance, in the regularity theory of variational integrals with non-standard growth. We develop a truncation method for computation of the indices and we also give characterizations of them in terms of the growth exponents and of the Jensen means. Applications concern variational integrals and extrapolation of integral operators.

Inégalités à poids pour l'opérateur de Hardy-Littlewood-Sobolev dans les espaces métriques mesurés à deux demi-dimensions

David Mascré (2006)

Colloquium Mathematicae

On a metric measure space (X,ϱ,μ), consider the weight functions w α ( x ) = ϱ ( x , z ) - α if ϱ(x,z₀) < 1, w α ( x ) = ϱ ( x , z ) - α if ϱ(x,z₀) ≥ 1, w β ( x ) = ϱ ( x , z ) - β if ϱ(x,z₀) < 1, w β ( x ) = ϱ ( x , z ) - β if ϱ(x,z₀) ≥ 1, where z₀ is a given point of X, and let κ a : X × X be an operator kernel satisfying κ a ( x , y ) c ϱ ( x , y ) a - d for all x,y ∈ X such that ϱ(x,y) < 1, κ a ( x , y ) c ϱ ( x , y ) a - D for all x,y ∈ X such that ϱ(x,y)≥ 1, where 0 < a < min(d,D), and d and D are respectively the local and global volume growth rate of the space X. We determine conditions on a, α₀, α₁, β₀, β₁ ∈ ℝ for the Hardy-Littlewood-Sobolev operator...

Inégalités pour l’opérateur intégral fractionnaire sur différents espaces métriques mesurés

David Mascré (2011)

Annales mathématiques Blaise Pascal

Le but de cet article est d’étendre les résultats classiques (inégalité de Hardy-Littlewood-Sobolev, inégalité de Hedberg) sur l’intégrale fractionnaire à deux types différents d’espaces métriques mesurés : les espaces métriques mesurés à mesure doublante d’une part, les espaces métriques mesurés à croissance polynomiale du volume d’autre part. Les deux résultats principaux que nous obtenons sont les suivants :Etant donné ( X , ρ , μ ) un espace métrique mesuré de type homogène, étant donnés p , q , α R tels que 1 p &lt; 1 / α , 1 / q = 1 / p - α ,...

Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein, Beatriz E. Viviani (2002)

Commentationes Mathematicae Universitatis Carolinae

In the setting of spaces of homogeneous-type, we define the Integral, I φ , and Derivative, D φ , operators of order φ , where φ is a function of positive lower type and upper type less than 1 , and show that I φ and D φ are bounded from Lipschitz spaces Λ ξ to Λ ξ φ and Λ ξ / φ respectively, with suitable restrictions on the quasi-increasing function ξ in each case. We also prove that I φ and D φ are bounded from the generalized Besov B ˙ p ψ , q , with 1 p , q < , and Triebel-Lizorkin spaces F ˙ p ψ , q , with 1 < p , q < , of order ψ to those of order φ ψ and ψ / φ respectively,...

Integral operators and weighted amalgams

C. Carton-Lebrun, H. Heinig, S. Hofmann (1994)

Studia Mathematica

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q ̅ ( L v p ̅ ) into q ( L u p ) . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted L p -spaces. Amalgams of the form q ( L w p ) , 1 < p,q < ∞ , q ≠ p, w A p , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Intégrales trigonométriques et pseudofonctions

Francisco Javier González Vieli (1994)

Annales de l'institut Fourier

On étudie un analogue à plusieurs variables réelles de la théorie de Riemann des séries trigonométriques vue sous l’angle des pseudofonctions, en utilisant le laplacien intégral et la fonction de Riemann qui découle de ce choix.

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...

Currently displaying 1 – 20 of 31

Page 1 Next