Displaying 21 – 40 of 67

Showing per page

Equivalence of measures of smoothness in L p ( S d - 1 ) , 1 < p < ∞

F. Dai, Z. Ditzian, Hongwei Huang (2010)

Studia Mathematica

Suppose Δ̃ is the Laplace-Beltrami operator on the sphere S d - 1 , Δ ρ k f ( x ) = Δ ρ Δ ρ k - 1 f ( x ) and Δ ρ f ( x ) = f ( ρ x ) - f ( x ) where ρ ∈ SO(d). Then ω m ( f , t ) L p ( S d - 1 ) s u p Δ ρ m f L p ( S d - 1 ) : ρ S O ( d ) , m a x x S d - 1 ρ x · x c o s t and K ̃ ( f , t m ) p i n f f - g L p ( S d - 1 ) + t m ( - Δ ̃ ) m / 2 g L p ( S d - 1 ) : g ( ( - Δ ̃ ) m / 2 ) are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for L p ( S d - 1 ) given in this paper plays a significant role in the proof.

Equivalence of norms in one-sided Hp spaces.

Liliana de Rosa, Carlos Segovia (2002)

Collectanea Mathematica

One-sided versions of maximal functions for suitable defined distributions are considered. Weighted norm equivalences of these maximal functions for weights in the Sawyer's Aq+ classes are obtained.

Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces

Wenchang Li, Jingshi Xu (2017)

Czechoslovak Mathematical Journal

Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.

Ergodic transforms associated to general averages

H. Aimar, A. L. Bernardis, F. J. Martín-Reyes (2010)

Studia Mathematica

Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in L p , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in L p . For p = 1 we find that the maximal ergodic...

Espaces BMO, inégalités de Paley et multiplicateurs idempotents

Hubert Lelièvre (1997)

Studia Mathematica

Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces B M O ψ q ( ) and B M O ψ q ( , B ) , where ψ q ( x ) = e x q - 1 for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that B M O ψ 1 ( ) = B M O ( ) and B M O ψ 1 ( , B ) = B M O ( , B ) by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of B M O ψ q ( ) . Pisier conjectured that the supports of idempotent multipliers of L ψ q ( ) form a Boolean...

Estimates for maximal singular integrals

Loukas Grafakos (2003)

Colloquium Mathematicae

It is shown that maximal truncations of nonconvolution L²-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1,1) and L p -bounded for 1 < p< ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.

Estimates for oscillatory singular integrals on Hardy spaces

Hussain Al-Qassem, Leslie Cheng, Yibiao Pan (2014)

Studia Mathematica

For any n ∈ ℕ, we obtain a bound for oscillatory singular integral operators with polynomial phases on the Hardy space H¹(ℝⁿ). Our estimate, expressed in terms of the coefficients of the phase polynomial, establishes the H¹ boundedness of such operators in all dimensions when the degree of the phase polynomial is greater than one. It also subsumes a uniform boundedness result of Hu and Pan (1992) for phase polynomials which do not contain any linear terms. Furthermore, the bound is shown to be valid...

Estimates for singular integrals and extrapolation

Shuichi Sato (2009)

Studia Mathematica

We study singular integrals with rough kernels, which belong to a class of singular Radon transforms. We prove certain estimates for the singular integrals that are useful in an extrapolation argument. As an application, we prove L p boundedness of the singular integrals under a certain sharp size condition on their kernels.

Currently displaying 21 – 40 of 67