Boundedness on inhomogeneous Lipschitz spaces of fractional integrals, singular integrals and hypersingular integrals associated to non-doubling measures.
The main purpose of this paper is to investigate the behavior of fractional integral operators associated to a measure on a metric space satisfying just a mild growth condition, namely that the measure of each ball is controlled by a fixed power of its radius. This allows, in particular, non-doubling measures. It turns out that this condition is enough to build up a theory that contains the classical results based upon the Lebesgue measure on Euclidean space and their known extensions for doubling...
Let -div be a second order elliptic operator with real, symmetric, bounded measurable coefficients on or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed , a necessary and sufficient condition is obtained for the boundedness of the Riesz transform on the space. As an application, for , we establish the boundedness of Riesz transforms on Lipschitz domains for operators with coefficients. The range of is sharp. The closely related boundedness of ...
The aim of the present paper is to obtain an inequality of Brézis-Gallouët-Wainger type for Besov-Morrey spaces. We investigate these spaces in a self-contained manner. Also, we verify that our result is sharp.