Concerning resolvent kernels of Volterra integral equations
In this paper, we deal with a system of integral algebraic equations of the Hessenberg type. Using a new index definition, the existence and uniqueness of a solution to this system are studied. The well-known piecewise continuous collocation methods are used to solve this system numerically, and the convergence properties of the perturbed piecewise continuous collocation methods are investigated to obtain the order of convergence for the given numerical methods. Finally, some numerical experiments...
We provide sufficient and necessary conditions for asymptotic periodicity of iterates of strong Feller stochastic operators.