Singular Value Estimates for Certain Convolution-Product Operators.
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10We consider ordinary fractional differential equations with Caputo-type differential operators with smooth right-hand sides. In various places in the literature one can find the statement that such equations cannot have smooth solutions. We prove that this is wrong, and we give a full characterization of the situations where smooth solutions exist. The results can be extended to a class of weakly singular Volterra integral equations.
Many authors discussed the problem of an elastic infinite plate with a curvilinear hole, some of them considered this problem in z-plane and the others in the s-plane. They obtained an exact expression for Goursat's functions for the first and second fundamental problem. In this paper, we use the Cauchy integral method to obtain a solution to the first and second fundamental problem by using a new transformation. Some applications are investigated and also some special cases are discussed.
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.