Page 1 Next

Displaying 1 – 20 of 305

Showing per page

A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators

A. Perälä, J. A. Virtanen, L. Wolf (2013)

Concrete Operators

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

An operational Haar wavelet method for solving fractional Volterra integral equations

Habibollah Saeedi, Nasibeh Mollahasani, Mahmoud Mohseni Moghadam, Gennady N. Chuev (2011)

International Journal of Applied Mathematics and Computer Science

A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.

Currently displaying 1 – 20 of 305

Page 1 Next