On a nonlinear convolution equation occurring in the theory of water percolation
We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in . The famous Chandrasekhar’s integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.
We deal with a class of integral equations on the unit circle in the complex plane with a regular part and with rotations of the form (*) x(t) + a(t)(Tx)(t) = b(t), where and are of the form (3) below. We prove that under some assumptions on analytic continuation of the given functions, (*) is a singular integral equation for m odd and is a Fredholm equation for m even. Further, we prove that T is an algebraic operator with characteristic polynomial . By means of the Riemann boundary value...
We give sufficient conditions for the existence of at least one integrable solution of equation . Our assumptions and proofs are expressed in terms of measures of noncompactness.