An integral equation for perturbed nonlinear functional differential equations, with applications to periodic solutions and nonlinear boundary value problems.
One parabolic integrodifferential problem in the abstract real Hilbert spaces is studied in this paper. The semidiscrete and full discrete approximate solution is defined and the error estimate of Rothe's function in some function spaces is established.
The accretive operators theory is employed for proving an existence theorem for the evolutive energy equations involving simultaneously conduction, stationary convection (in the sense that the velocity field is assumed to be time independent), and radiation. In doing that we need to use new existence results for elliptic linear problems with mixed boundary conditions and irregular data.
The main objective of the present paper is to study the approximate solutions for integrodifferential equations of the neutral type with given initial condition. A variant of a certain fundamental integral inequality with explicit estimate is used to establish the results. The discrete analogues of the main results are also given.