Page 1

Displaying 1 – 12 of 12

Showing per page

A heat approximation

Miroslav Dont (2000)

Applications of Mathematics

The Fourier problem on planar domains with time variable boundary is considered using integral equations. A simple numerical method for the integral equation is described and the convergence of the method is proved. It is shown how to approximate the solution of the Fourier problem and how to estimate the error. A numerical example is given.

A -stable methods of high order for Volterra integral equations

Ľubor Malina (1975)

Aplikace matematiky

Method for numerical solution of Volterra integral equations, based on the O.I.M. methods, is suggested. It is known that the class of O.I.M. methods includes A -stable methods of arbitrary high order of asymptotic accuracy. In part 5, it is proved that these methods generate methods for numerical solution of Volterra equations which are also A -stable and of an arbitrarily high order. There is one advantage of the methods. Namely, they need no matrix inversion in the course of their numerical realization....

Approximate solutions for integrodifferential equations of the neutral type

B. G. Pachpatte (2010)

Commentationes Mathematicae Universitatis Carolinae

The main objective of the present paper is to study the approximate solutions for integrodifferential equations of the neutral type with given initial condition. A variant of a certain fundamental integral inequality with explicit estimate is used to establish the results. The discrete analogues of the main results are also given.

Approximation of abstract linear integrodifferential equations

Hirokazu Oka, Naoki Tanaka (2000)

Studia Mathematica

This paper is devoted to the approximation of abstract linear integrodifferential equations by finite difference equations. The result obtained here is applied to the problem of convergence of the backward Euler type discrete scheme.

Currently displaying 1 – 12 of 12

Page 1