L y L*-convergencias en G(H).
Given a real separable Hilbert space H, we denote with G(H) the geometry of closed linear subspaces of H.The strong convergence of sequences of subspaces is shown to be a L*-convergence and the weak convergence a L-convergence.The smallest L*-convergence containing the weak convergence is found, and the orthogonal image of the strong convergence, which is also a L*-convergence, is defined.