Espacios de funciones holomorfas cuyas diferenciales se extienden en el origen.
We show that every separable complex L₁-predual space X is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of X is a bounded homogeneous symmetric domain.
We prove that extendible 2-homogeneous polynomials on spaces with cotype 2 are integral. This allows us to find examples of approximable non-extendible polynomials on (1 ≤ p < ∞ ) of any degree. We also exhibit non-nuclear extendible polynomials for 4 < p < ∞. We study the extendibility of analytic functions on Banach spaces and show the existence of functions of infinite radius of convergence whose coefficients are finite type polynomials but which fail to be extendible.
Studying the sequential completeness of the space of germs of Banach-valued holomorphic functions at a points of a metric vector space some theorems on extension of holomorphic maps on Riemann domains over topological vector spaces with values in some locally convex analytic spaces are proved. Moreover, the extendability of holomorphic maps with values in complete C-spaces to the envelope of holomorphy for the class of bounded holomorphic functions is also established. These results are known in...
Let E be a complex Hausdorff locally convex space such that the strong dual E’ of E is sequentially complete, let F be a closed linear subspace of E and let U be a uniformly open subset of E. We denote by Π: E → E/F the canonical quotient mapping. In §1 we study the factorization of uniformly holomorphic functions through π. In §2 we study F-quotients of uniform type and introduce the concept of envelope of uF-holomorphy of a connected uniformly open subset U of E. The main result states that the...
We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...
We introduce and investigate the non-n-linear concept of fully summing mappings; if n = 1 this concept coincides with the notion of nonlinear absolutely summing mappings and in this sense this article unifies these two theories. We also introduce a non-n-linear definition of Hilbert-Schmidt mappings and sketch connections between this concept and fully summing mappings.