On approximation of compact multivalued maps in topological vector spaces.
A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.
In the first part of this paper, we prove that in a sense the class of bi-Lipschitz -convex mappings, whose inverses are locally -convex, is stable under finite-dimensional -convex perturbations. In the second part, we construct two -convex mappings from onto , which are both bi-Lipschitz and their inverses are nowhere locally -convex. The second mapping, whose construction is more complicated, has an invertible strict derivative at . These mappings show that for (locally) -convex mappings...