A commutativity theorem for Banach algebras
For a locally convex *-algebra A equipped with a fixed continuous *-character ε (which is roughly speaking a generalized F*-algebra), we define a cohomological property, called property (FH), which is similar to character amenability. Let be the space of continuous functions with compact support on a second countable locally compact group G equipped with the convolution *-algebra structure and a certain inductive topology. We show that has property (FH) if and only if G has property (T). On...
Let G be a locally compact abelian group, M(G) the convolution measure algebra, and X a Banach M(G)-module under the module multiplication μ ∘ x, μ ∈ M(G), x ∈ X. We show that if X is an essential L¹(G)-module, then for each measure μ in reg(M(G)), where denotes the operator in B(X) defined by , σ(·) the usual spectrum in B(X), sp(X) the hull in L¹(G) of the ideal , μ̂ the Fourier-Stieltjes transform of μ, and reg(M(G)) the largest closed regular subalgebra of M(G); reg(M(G)) contains all...