Page 1

Displaying 1 – 5 of 5

Showing per page

Elements of C*-algebras commuting with their Moore-Penrose inverse

J. Koliha (2000)

Studia Mathematica

We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.

Exponential bounds for noncommuting systems of matrices

Brian Jefferies (2001)

Studia Mathematica

It is shown that a finite system T of matrices whose real linear combinations have real spectrum satisfies a bound of the form | | e i T , ζ | | C ( 1 + | ζ | ) s e r | ζ | . The proof appeals to the monogenic functional calculus.

Currently displaying 1 – 5 of 5

Page 1