On functional representation of locally -pseudoconvex algebras.
Let s be the space of rapidly decreasing sequences. We give the spectral representation of normal elements in the Fréchet algebra L(s',s) of so-called smooth operators. We also characterize closed commutative *-subalgebras of L(s',s) and establish a Hölder continuous functional calculus in this algebra. The key tool is the property (DN) of s.
Representations of a module over a *-algebra are considered and some related seminorms are constructed and studied, with the aim of finding bounded *-representations of .
The class of *-representations of a normed quasi *-algebra (𝔛,𝓐₀) is investigated, mainly for its relationship with the structure of (𝔛,𝓐₀). The starting point of this analysis is the construction of GNS-like *-representations of a quasi *-algebra (𝔛,𝓐₀) defined by invariant positive sesquilinear forms. The family of bounded invariant positive sesquilinear forms defines some seminorms (in some cases, C*-seminorms) that provide useful information on the structure of (𝔛,𝓐₀) and on the continuity...
In this brief account we present the way of obtaining unbounded *-representations in terms of the so-called "unbounded" C*-seminorms. Among such *-representations we pick up a special class with "good behaviour" and characterize them through some properties of the Pták function.
The existence of unbounded *-representations of (locally convex) tensor product *-algebras is investigated, in terms of the existence of unbounded *-representations of the (locally convex) factors of the tensor product and vice versa.
We generalize Wiener's inversion theorem for Fourier transforms on closed subsets of the dual group of a locally compact abelian group to cosets of ideals in a class of non-commutative *-algebras having specified properties, which are all fulfilled in the case of the group algebra of any locally compact abelian group.