Page 1

Displaying 1 – 6 of 6

Showing per page

The homology of spaces of simple topological measures

Ø. Johansen, A. B. Rustad (2003)

Fundamenta Mathematicae

The simple topological measures X* on a q-space X are shown to be a superextension of X. Properties inherited from superextensions to topological measures are presented. The homology groups of various subsets of X* are calculated. For a q-space X, X* is shown to be a q-space. The homology of X* when X is the annulus is calculated. The homology of X* when X is a more general genus one space is investigated. In particular, X* for the torus is shown to have a retract homeomorphic to an infinite product...

The projective limit functor for spectra of webbed spaces

L. Frerick, D. Kunkle, J. Wengenroth (2003)

Studia Mathematica

We study Palamodov's derived projective limit functor Proj¹ for projective spectra consisting of webbed locally convex spaces introduced by Wilde. This class contains almost all locally convex spaces appearing in analysis. We provide a natural characterization for the vanishing of Proj¹ which generalizes and unifies results of Palamodov and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for solving surjectivity problems in analysis.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides a negative...

Currently displaying 1 – 6 of 6

Page 1