Page 1

Displaying 1 – 5 of 5

Showing per page

Refined Algebraic Quantization: Systems with a single constraint

Donald Marolf (1997)

Banach Center Publications

This paper explores in some detail a recent proposal (the Rieffel induction/refined algebraic quantization scheme) for the quantization of constrained gauge systems. Below, the focus is on systems with a single constraint and, in this context, on the uniqueness of the construction. While in general the results depend heavily on the choices made for certain auxiliary structures, an additional physical argument leads to a unique result for typical cases. We also discuss the 'superselection laws' that...

Representation theorem for convex effect algebras

Stanley P. Gudder, Sylvia Pulmannová (1998)

Commentationes Mathematicae Universitatis Carolinae

Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.

Currently displaying 1 – 5 of 5

Page 1