The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 18 of 18

Showing per page

Non-Archimedean K-spaces

Albert Kubzdela (2005)

Banach Center Publications

We study Banach spaces over a non-spherically complete non-Archimedean valued field K. We prove that a non-Archimedean Banach space over K which contains a linearly homeomorphic copy of l (hence l itself) is not a K-space. We discuss the three-space problem for a few properties of non-Archimedean Banach spaces.

Normal bases for the space of continuous functions defined on a subset of Zp.

Ann Verdoodt (1994)

Publicacions Matemàtiques

Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.

Currently displaying 1 – 18 of 18

Page 1