On bases and projections in non-Archimedean Banach spaces.
Page 1 Next
P.K. Jain, N.M. Kapoor (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
P. K. Jain, N. M. Kapoor (1977)
Publications de l'Institut Mathématique
Kusraev, A.G., Kutateladze, S.S. (2000)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Mohammed Guediri (1996)
Revista Matemática de la Universidad Complutense de Madrid
We study geodesic completeness for left-invariant Lorentz metrics on solvable Lie groups.
Tanaka, Yasuhito (2011)
Applied Mathematics E-Notes [electronic only]
Narici, Lawrence, Beckenstein, Edward (1996)
Georgian Mathematical Journal
Murali, V., Lubczonok, G. (2003)
International Journal of Mathematics and Mathematical Sciences
Balachandran, K., Prakash, P. (2004)
Journal of Applied Mathematics and Stochastic Analysis
Kusraev, A.G., Kutateladze, S.S. (2004)
Sibirskij Matematicheskij Zhurnal
C. Perez-Garcia (1995)
Annales mathématiques Blaise Pascal
Ryszard Urbanski (1986)
Mathematische Zeitschrift
Lyantse, W.E., Kudrik, T.S. (2002)
Sibirskij Matematicheskij Zhurnal
A. K. Katsaras (1988)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Peter Semrl (1986)
Aequationes mathematicae
Andrzej Madrecki (1984/1985)
Mathematische Zeitschrift
L. E. Payne (1985)
Banach Center Publications
S. Oortwijn (1995)
Annales mathématiques Blaise Pascal
C. Alsina, A. Sklar, B. Schweizer (1993)
Aequationes mathematicae
Goudarzi, M., Vaezpour, S.M. (2009)
The Journal of Nonlinear Sciences and its Applications
Dong Qiu, Chongxia Lu, Shuai Deng, Liang Wang (2014)
Kybernetika
In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
Page 1 Next