The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 381 –
400 of
644
Let be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay , , where is the -derivative on and is the -derivative on . We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show...
An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.
We discuss the existence of positive radial solutions of the semilinear elliptic equation
⎧-Δu = K(|x|)f(u), x ∈ Ω
⎨αu + β ∂u/∂n = 0, x ∈ ∂Ω,
⎩,
where , N ≥ 3, K: [r₀,∞) → ℝ⁺ is continuous and , f ∈ C(ℝ⁺,ℝ⁺), f(0) = 0. Under the conditions related to the asymptotic behaviour of f(u)/u at 0 and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the fixed point...
We give conditions which guarantee the existence of positive solutions for a variety of arbitrary order boundary value problems for which all boundary conditions involve functionals, using the well-known Krasnosel'skiĭ fixed point theorem. The conditions presented here deal with a variety of problems, which correspond to various functionals, in a uniform way. The applicability of the results obtained is demonstrated by a numerical application.
This paper investigates the existence of positive solutions for a fourth-order differential system using a fixed point theorem of cone expansion and compression type.
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
Currently displaying 381 –
400 of
644