Displaying 841 – 860 of 1576

Showing per page

On the convergence of Neumann series in Banach space.

Vasile I. Istrăţescu (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si estende un risultato di N. Suzuki sulla convergenza della serie di Neumann per un operatore compatto in uno spazio di Banach.

On the convergence of Newton's method under ω*-conditioned second derivative

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's method.

On the convergence of the Ishikawa iterates to a common fixed point of two mappings

Ljubomir B. Ćirić, Jeong Sheok Ume, M. S. Khan (2003)

Archivum Mathematicum

Let C be a convex subset of a complete convex metric space X , and S and T be two selfmappings on C . In this paper it is shown that if the sequence of Ishikawa iterations associated with S and T converges, then its limit point is the common fixed point of S and T . This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].

On the convergence of the secant method under the gamma condition

Ioannis Argyros (2007)

Open Mathematics

We provide sufficient convergence conditions for the Secant method of approximating a locally unique solution of an operator equation in a Banach space. The main hypothesis is the gamma condition first introduced in [10] for the study of Newton’s method. Our sufficient convergence condition reduces to the one obtained in [10] for Newton’s method. A numerical example is also provided.

On the convergence of two-step Newton-type methods of high efficiency index

Ioannis K. Argyros, Saïd Hilout (2009)

Applicationes Mathematicae

We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided.

Currently displaying 841 – 860 of 1576