Displaying 861 – 880 of 1576

Showing per page

On the Converse of Caristi's Fixed Point Theorem

Szymon Głąb (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be a nonempty set of cardinality at most 2 and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.

On the (C,α) Cesàro bounded operators

Elmouloudi Ed-dari (2004)

Studia Mathematica

For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by M α = ( A α ) - 1 k = 0 n A n - k α - 1 T k . For α = 1, we find M ¹ = ( n + 1 ) - 1 k = 0 n T k , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.

On the (C,α) uniform ergodic theorem

Elmouloudi Ed-dari (2003)

Studia Mathematica

We improve a recent result of T. Yoshimoto about the uniform ergodic theorem with Cesàro means of order α. We give a necessary and sufficient condition for the (C,α) uniform ergodicity with α > 0.

On the defect spectrum of an extension of a Banach space operator

Vladimír Kordula (1998)

Czechoslovak Mathematical Journal

Let T be an operator acting on a Banach space X . We show that between extensions of T to some Banach space Y X which do not increase the defect spectrum (or the spectrum) it is possible to find an extension with the minimal possible defect spectrum.

On the density of extremal solutions of differential inclusions

F. S. De Blasi, G. Pianigiani (1992)

Annales Polonici Mathematici

An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].

On the dependence of the orthogonal projector on deformations of the scalar product

Zbigniew Pasternak-Winiarski (1998)

Studia Mathematica

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.

On the differences of the consecutive powers of Banach algebra elements

Helmuth Rönnefarth (1997)

Banach Center Publications

Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence x n ( x - 1 ) n for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of x n n and 1 / n k = 0 n - 1 x k n .

Currently displaying 861 – 880 of 1576