Page 1

Displaying 1 – 1 of 1

Showing per page

Isometries and automorphisms of the spaces of spinors.

F. J. Hervés, J. M. Isidro (1992)

Revista Matemática de la Universidad Complutense de Madrid

The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.

Currently displaying 1 – 1 of 1

Page 1