Displaying 181 – 200 of 451

Showing per page

Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality.

Jacek Dziubanski, Jacek Zienkiewicz (1999)

Revista Matemática Iberoamericana

Let {Tt}t>0 be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space HA1 by means of a maximal function associated with the semigroup {Tt}t>0. Atomic and Riesz transforms characterizations of HA1 are shown.

Hille-Yosida theory in convenient analysis.

Josef Teichmann (2002)

Revista Matemática Complutense

A Hille-Yosida Theorem is proved on convenient vector spaces, a class, which contains all sequentially complete locally convex spaces. The approach is governed by convenient analysis and the credo that many reasonable questions concerning strongly continuous semigroups can be proved on the subspace of smooth vectors. Examples from literature are reconsidered by these simpler methods and some applications to the theory of infinite dimensional heat equations are given.

Hille-Yosida type theorems for local regularized semigroups and local integrated semigroups

Sheng Wang Wang (2002)

Studia Mathematica

Motivated by a great deal of interest recently in operators that may not be densely defined, we deal with regularized semigroups and integrated semigroups that are either not exponentially bounded or not defined on [0,∞) and generated by closed operators which may not be densely defined. Some characterizations and related examples are presented. Our results are extensions of the corresponding results produced by other authors.

Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces

Teresa Bermúdez, Antonio Bonilla, José A. Conejero, Alfredo Peris (2005)

Studia Mathematica

Our aim in this paper is to prove that every separable infinite-dimensional complex Banach space admits a topologically mixing holomorphic uniformly continuous semigroup and to characterize the mixing property for semigroups of operators. A concrete characterization of being topologically mixing for the translation semigroup on weighted spaces of functions is also given. Moreover, we prove that there exists a commutative algebra of operators containing both a chaotic operator and an operator which...

Hypercyclicity of Semigroups is a Very Unstable Property

W. Desch, W. Schappacher (2008)

Mathematical Modelling of Natural Phenomena

Hypercyclicity of C0-semigroups is a very unstable property: We give examples to show that adding arbitrary small constants or a bounded rank one operator to the generator of a hypercyclic semigroup can destroy hypercyclicity. Also the limit of hypercyclic semigroups (even in operator norm topology) need not be hypercyclic, and a hypercyclic semigroup can be the limit of nonhypercyclic ones. Hypercyclicity is not inherited by the Yosida approximations. Finally, the restriction of a hypercyclic...

Impulsive perturbation of C₀-semigroups and stochastic evolution inclusions

N.U. Ahmed (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions. We prove existence of solutions and study properties of the solution set. It is also indicated how these results can be used in the study of control systems driven by vector measures.

Infinitesimal generators for a class of polynomial processes

Włodzimierz Bryc, Jacek Wesołowski (2015)

Studia Mathematica

We study the infinitesimal generators of evolutions of linear mappings on the space of polynomials, which correspond to a special class of Markov processes with polynomial regressions called quadratic harnesses. We relate the infinitesimal generator to the unique solution of a certain commutation equation, and we use the commutation equation to find an explicit formula for the infinitesimal generator of free quadratic harnesses.

Currently displaying 181 – 200 of 451