Page 1

Displaying 1 – 1 of 1

Showing per page

Inverses of generators of nonanalytic semigroups

Ralph deLaubenfels (2009)

Studia Mathematica

Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup e t A t 0 . It is shown that A - 1 generates an O ( 1 + τ ) A ( 1 - A ) - 1 -regularized semigroup. Several equivalences for A - 1 generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of e t A t 0 , on subspaces, for A - 1 generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate a strongly...

Currently displaying 1 – 1 of 1

Page 1