On a class of elliptic differential operators degenerating at one point
A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.
A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.
Convergence of special Green integrals for matrix factorization of the Laplace operator in is proved. Explicit formulae for solutions of -equation in strictly pseudo-convex domains in are obtained.
We prove the analog of the Cwikel-Lieb-Rozenblum estimate for a wide class of second-order elliptic operators by two different tools: Lieb-Thirring inequalities for Schrödinger operators with matrix-valued potentials and Sobolev inequalities for warped product spaces.