The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 9 of 9

Showing per page

Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems

Volker Reitmann (2011)

Mathematica Bohemica

Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation.

Relations between weighted Orlicz and B M O φ spaces through fractional integrals

Eleonor Ofelia Harboure, Oscar Salinas, Beatriz E. Viviani (1999)

Commentationes Mathematicae Universitatis Carolinae

We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator I α maps weak weighted Orlicz - φ spaces into appropriate weighted versions of the spaces B M O ψ , where ψ ( t ) = t α / n φ - 1 ( 1 / t ) . This generalizes known results about boundedness of I α from weak L p into Lipschitz spaces for p > n / α and from weak L n / α into B M O . It turns out that the class of weights corresponding to I α acting on weak - L φ for φ of lower type equal or greater than n / α , is the same as the one solving the problem for weak...

Currently displaying 1 – 9 of 9

Page 1