Generalizations of the Lax-Milgram theorem.
Consider, in dimension 3, a system of coupled Klein-Gordon equations with different speeds, and an arbitrary quadratic nonlinearity. We show, for data which are small, smooth, and localized, that a global solution exists, and that it scatters. The proof relies on the space-time resonance approach; it turns out that the resonant structure of this equation has features which were not studied before, but which are generic in some sense.