A final value problem for heat equation: regularization by truncation method and new error estimates.
The nonhomogeneous backward Cauchy problem , where is a positive self-adjoint unbounded operator which has continuous spectrum and is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.