Convergence of a random iteration scheme to a random fixed point.
Weak solutions of given problems are sometimes not necessarily unique. Relevant solutions are then picked out of the set of weak solutions by so-called entropy conditions. Connections between the original and the numerical entropy condition were often discussed in the particular case of scalar conservation laws, and also a general theory was presented in the literature for general scalar problems. The entropy conditions were realized by certain inequalities not generalizable to systems of equations...
Existence of fixed points of multivalued mappings that satisfy a certain contractive condition was proved by N. Mizoguchi and W. Takahashi. An alternative proof of this theorem was given by Peter Z. Daffer and H. Kaneko. In the present paper, we give a simple proof of that theorem. Also, we define Mann and Ishikawa iterates for a multivalued map with a fixed point and prove that these iterates converge to a fixed point of under certain conditions. This fixed point may be different from...