Displaying 361 – 380 of 1511

Showing per page

Convergence domains under Zabrejko-Zinčenko conditions using recurrent functions

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.

Convergence of discretization procedures for problems whose entropy solutions are uniquely characterized by additional relations

Rainer Ansorge (2003)

Applications of Mathematics

Weak solutions of given problems are sometimes not necessarily unique. Relevant solutions are then picked out of the set of weak solutions by so-called entropy conditions. Connections between the original and the numerical entropy condition were often discussed in the particular case of scalar conservation laws, and also a general theory was presented in the literature for general scalar problems. The entropy conditions were realized by certain inequalities not generalizable to systems of equations...

Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point

K. P. R. Sastry, G. V. R. Babu (2005)

Czechoslovak Mathematical Journal

Existence of fixed points of multivalued mappings that satisfy a certain contractive condition was proved by N. Mizoguchi and W. Takahashi. An alternative proof of this theorem was given by Peter Z. Daffer and H. Kaneko. In the present paper, we give a simple proof of that theorem. Also, we define Mann and Ishikawa iterates for a multivalued map T with a fixed point p and prove that these iterates converge to a fixed point q of T under certain conditions. This fixed point q may be different from...

Currently displaying 361 – 380 of 1511