Parallel synchronous algorithm for nonlinear fixed point problems.
This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...
This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...
The paper deals with the periodic boundary value problem (1) , , (2) , , where , , , , , and are continuous on , , , , {nonempty convex compact subsets of }, . The existence of such periodic solution is proven via Ky Fan’s fixed point theorem.
In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that...
We study the existence of spatial periodic solutions for nonlinear elliptic equations where is a continuous function, nondecreasing w.r.t. . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....
We study the existence of spatial periodic solutions for nonlinear elliptic equations where g is a continuous function, nondecreasing w.r.t. u. We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions g are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations. ...