Topological -adic vector spaces and index theory
We are concerned with some unbounded linear operators on the so-called -adic Hilbert space . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on , and the solvability of the equation where is a linear operator on .
Orthomodular spaces are the counterpart of Hilbert spaces for fields other than or . Both share numerous properties, foremost among them is the validity of the Projection theorem. Nevertheless in the study of bounded linear operators which started in [3], there appeared striking differences with the classical theory. In fact, in this paper we shall construct, on the canonical non-archimedean orthomodular space of [5], two infinite families of self-adjoint bounded linear operators having no...