Page 1

Displaying 1 – 2 of 2

Showing per page

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni Cupini, Cristina Marcelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangianf is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni Cupini, Cristina Marcelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

Currently displaying 1 – 2 of 2

Page 1